Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 43(3): 125-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350140

RESUMO

Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of Cornus officinalis. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the C. officinalis geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from C. officinalis and analyzed. The cDNA sequence of the CoGPPS gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of Actinidia chinensis and Camellia sinensis, but relatively distantly related to Paeonia lactiflora and Tripterygium wilfordii. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of CoGPPS; that is, CoGPPS was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.


Assuntos
Cornus , Iridoides , Fosfatos de Poli-Isoprenil , Cornus/genética , Cornus/química , Filogenia , Glicosídeos Iridoides , Clonagem Molecular
2.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836156

RESUMO

Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, antioxidant, anti-inflammatory, and anti-cancer effects. Mitogen-activated protein kinase (MAPKs) can increase the activity of WRKY family transcription factors in a phosphorylated manner, thereby increasing the content of secondary metabolites. However, the mechanism of interaction between MAPKs and WRKYs in F. suspensa remains unclear. In this study, we cloned the genes of FsWRKY4 and FsMAPK3, and performed a bioinformatics analysis. The expression patterns of FsWRKY4 and FsMAPK3 were analyzed in the different developmental stages of leaf and fruit from F. suspensa using real-time fluorescence quantitative PCR (qRT-PCR). Subcellular localization analysis of FsWRKY4 and FsMAPK3 proteins was performed using a laser scanning confocal microscope. The existence of interactions between FsWRKY4 and FsMPAK3 in vitro was verified by yeast two-hybridization. Results showed that the cDNA of FsWRKY4 (GenBank number: OR566682) and FsMAPK3 (GenBank number: OR566683) were 1587 and 522 bp, respectively. The expression of FsWRKY4 was higher in the leaves than in fruits, and the expression of FsMAPK3 was higher in fruits but lower in leaves. The subcellular localization results indicated that FsWRKY4 was localized in the nucleus and FsMAPK3 in the cytoplasm and nucleus. The prey vector pGADT7-FsWRKY4 and bait vector pGBKT7-FsMAPK3 were constructed and co-transferred into Y2H Glod yeast receptor cells. The results indicated that FsWRKY4 and FsMAPK3 proteins interact with each other in vitro. The preliminary study may provide a basis for more precise elucidation of the synthesis of secondary metabolites in F. suspensa.

3.
Plant Commun ; 4(6): 100641, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37349987

RESUMO

Bioengineering of photorespiratory bypasses is an effective strategy for improving plant productivity by modulating photosynthesis. In previous work, two photorespiratory bypasses, the GOC and GCGT bypasses, increased photosynthetic rates but decreased seed-setting rate in rice (Oryza sativa), probably owing to excess photosynthate accumulation in the stem. To solve this bottleneck, we successfully developed a new synthetic photorespiratory bypass (called the GMA bypass) in rice chloroplasts by introducing Oryza sativa glycolate oxidase 1 (OsGLO1), Cucurbita maxima malate synthase (CmMS), and Oryza sativa ascorbate peroxidase7 (OsAPX7) into the rice genome using a high-efficiency transgene stacking system. Unlike the GOC and GCGT bypass genes driven by constitutive promoters, OsGLO1 in GMA plants was driven by a light-inducible Rubisco small subunit promoter (pRbcS); its expression dynamically changed in response to light, producing a more moderate increase in photosynthate. Photosynthetic rates were significantly increased in GMA plants, and grain yields were significantly improved under greenhouse and field conditions. Transgenic GMA rice showed no reduction in seed-setting rate under either test condition, unlike previous photorespiratory-bypass rice, probably reflecting proper modulation of the photorespiratory bypass. Together, these results imply that appropriate engineering of the GMA bypass can enhance rice growth and grain yield without affecting seed-setting rate.


Assuntos
Oryza , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Fotossíntese/genética , Cloroplastos/metabolismo , Grão Comestível/genética
4.
DNA Cell Biol ; 42(2): 91-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36730809

RESUMO

Cornus officinalis is a perennial deciduous tree or shrub. Its mature fruits are extracted and used in Traditional Chinese Medicine, called Shanzhuyu. The characteristic active components of C. officinalis include loganin and morroniside, which belong to iridoid glycosides. 3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is a key enzyme in the cytoplasmic mevalonate pathway providing the precursor molecules isopentenyl pyrophosphate and dimethylallyl pyrophosphate for isoprenoid biosynthesis such as sterols, triterpenes, and their derivatives such as iridoid glycosides. Different concentrations of methyl jasmonate (MeJA) and ethephon (ETH) solutions were sprayed on C. officinalis seedlings, and the effect of hormones on CoHMGS gene expression was detected by real-time fluorescence quantitative PCR. The quantitative real-time PCR results showed that 750 mg/L ETH treatment had the most significant induction effect on CoHMGS gene expression. The HPLC analysis of extracts revealed that the treatment could also significantly increase the content of morroniside and loganin in the leaves of C. officinalis. By use of a CoHMGS-green fluorescent protein (GFP) fusion construct for heterologous expression in tobacco, laser scanning confocal microscopy revealed a cytoplasmic localization. This preliminary study of the CoHMGS gene could prepare the ground for more precisely elucidating the synthesis of secondary metabolite in C. officinalis.


Assuntos
Cornus , Medicamentos de Ervas Chinesas , Cornus/genética , Iridoides/farmacologia , Glicosídeos Iridoides
5.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771604

RESUMO

Heavy metal pollution possesses potential hazards to plant, animal and human health, which has become the focus of recent attention. Hence, phytoremediation has been regarded as one of the most important remediation technologies for heavy-metal-contaminated soils. In this research, a dominant mine tailing plant, Macleaya cordata, was used as the experimental material to compare the metal transport and oxidative stress response in its roots under lead (Pb) and zinc (Zn) treatments. The result showed that Pb was mainly accumulated in the roots of M. cordata under the Pb treatment; less than 1% Pb was transported to the parts above. An analysis of the Zn content demonstrated a 39% accumulation in the shoots. The production of reactive oxygen species was detected using the in situ histological staining of roots, which showed that hydrogen peroxide in the root tips was observed to increase with the increase in both Pb and Zn concentrations. No significant superoxide anion changes were noted in the root tips under the Pb treatment. An analysis of the root enzyme activity showed that increase in NADPH oxidase activity can be responsible for the production of superoxide anions, subsequent the inhibition of root growth and decrease in antioxidant enzyme activities in the roots of M. cordata exposed to excess Zn. In total, this research provides evidence that the root of M. cordata has a high antioxidant capacity for Pb stress, so it can accumulate more Pb without oxidative damage. On the other hand, the Zn accumulated in the roots of M. cordata causes oxidative damage to the root tips, which can stimulate more Zn transport to the shoots to reduce the damage to the roots. This result will provide a basis for the application of M. cordata in the phytoremediation of soil polluted by Pb-Zn compounds.

6.
ACS Appl Mater Interfaces ; 14(17): 20083-20092, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468277

RESUMO

In this work, a stretchable, dual thermo-responsive and strain-responsive ionogel has been synthesized by one-step photopolymerization. The obtained ionogel shows an ultrahigh stretchability (∼3000%), a high ionic conductivity (up to 3.1 mS/cm), and a good temperature tolerance (-40 to 300 °C). Importantly, these ionogels show an upper critical solution temperature-type phase transition with a wide tunable phase-transition temperature (17.5-42.5 °C) and reversible color/transparency switching. In particular, the as-prepared ionogel-based flexible/wearable temperature monitors and smart windows show an excellent designability and programmability, temperature modulation ability, and thermal responsiveness. Moreover, the ionogels-based strain sensors have temperature- and strain-dual responsibility and a broad strain-sensing range (1-700%), which can effectively monitor various motions. This strategy of fabricating dual thermo- and strain-responsive ionogels by using a one-step method and only one polymer holds great promise for the next generation of multifunctional stimuli-responsive materials.

7.
Int J Mol Sci ; 18(10)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974021

RESUMO

Cadmium (Cd) and excess copper (Cu) are toxic to plants, causing a wide range of deleterious effects including the formation of reactive oxygen species. Metallothioneins (MTs) may protect plant cells from heavy metal toxicity by chelating heavy metals via cysteine thiol groups. They may also function as antioxidants. The study investigated the relationship of H2O2 production and ricMT expression in rice radicles and rice suspension cells under Cu or Cd stress. The results showed that H2O2 production in the rice radicles increased before Cu-induced ricMT expression, and after Cd-induced ricMT expression. Rice suspension cells of sense- and antisense-ricMT transgenic lines were obtained by an Agrobacterium-mediated transformation. Overexpression of ricMT significantly decreased the death rate of rice cells, which was accompanied by blocked H2O2 accumulation in rice suspension cells subject to Cu and Cd stress. Our findings confirm that H2O2 is involved in the MT-mediated tolerance of Cu and Cd toxicity in rice.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio/metabolismo , Metalotioneína/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cádmio/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Metalotioneína/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...